可见光至中红外波段连续可调谐激光系统
可见光至中红外波段连续可调谐激光系统

可见光至中红外波段连续可调谐激光系统

——700 nm~20 μm连续可调谐OPO激光器


Stuttgart Instruments成立于2017年,依托德国斯图加特大学激光器核心技术,专注于宽调谐全自动化高性能红外激光源的研发与生产。产品可覆盖700 nm~20 μm的宽光谱范围,并能在该范围内保持毫瓦(mW)至瓦(W)级的高输出功率。

Stuttgart Instruments 可见光至中红外波段连续可调谐激光系统具有连续可调高精度高重复性等特点,兼具卓越的低噪声特性与被动长期稳定性,脉冲持续时间覆盖100 fs10 ps,重复频率范围10~100 MHz。该系列激光器已为振动红外光谱、相干拉曼光谱、多光子显微镜成像等多种光谱学应用提多功能、高性能且稳定可靠的激光光源解决方案,进一步促进材料科学研究、生命科学及环境监测等前沿领域的研究及发现。

目前,该系列激光系统已被全球多所知名大学与科研机构采用,成功助力用户取得多项重要科研成果,推动了大量高水平科学论著的发表与应用成果的转化。

为振动红外光谱、相干拉曼光谱、多光子显微镜成像等多种光谱学应用提多功能、高性能且稳定可靠的激光光源解决方案,进一步促进材料科学研究、生命科学及环境监测等前沿领域的研究及发现。#

产品特点

☛  精确、稳定

• 高重复性

• 超低噪声

• 全自动化

核心技术

Stuttgart Instruments可见光至中红外波段连续可调谐激光系统采用革命性的光纤反馈设计,兼具以下优势:

• 高稳定性

• 精准可调谐性

• 紧凑型结构

• 低噪声


主要应用领域


材料科学

• 近场光学显微镜

• 激光-傅里叶变换红外光谱

• 超快光谱

• 等离激元

• 高亮度中红外成像与照明



生命科学

• 多光子与深层组织成像

• 相干拉曼显微成像

• 双光子激发荧光

• 光热与光声成像



环境检测

• 光声光谱

• 遥感



Alpha 超短脉冲系列


• 调谐范围:700 nm to 20 μm

• 脉冲宽度:100 fs to 1 ps

• 重复频率:10 to 80 MHz

undefined

Piano 超窄线宽系列


• 调谐范围: 1.4 to 18 µm

• 超窄线宽: 低至2 cm-1

• 支持精确快速扫描光谱



1. Angular dispersion suppression in deeply subwavelength phonon polariton bound states in the continuum metasurfaces. L. Nan, A. Mancini, T. Weber, G.L. Seah, E. Cortes, A. Tittl and S.A. Maier. Optica 12, 1-4 (2025) 

2. Coherent control in quartz-enhanced photoacoustics: fingerprinting a trace gas at ppm-level within seconds. S. Angstenberger, M. Floess, L. Schmid, P. Ruchka, T. Steinle and H. Giessen. Optica 12, 1-4 (2025)

3. Photoacoustic spectroscopy with a widely tunable narrowband fiber-feedback optical parametric oscillator. L. Schmid, F. Kadriu, S. Kuppel, M. Floess, T. Steinle and H. Giessen. AIP Advances 14, 105328 (2024) 

4. Multiferroicity in plastically deformed SrTiO3.  X. Wang, A. Kundu, B. Xu, S. Hameed, N. Rothem, S. Rabkin, L. Rogić, L. Thompson, A. McLeod, M. Greven, D. Pelc, I. Sochnikov, B. Kalisky and A. Klein. Nat. Commun. 15, 7442 (2024)

5. Revealing Mode Formation in Quasi-Bound States in Continuum Metasurfaces via Near-Field Optical Microscopy. T. Gölz, E. Baù, A. Aigner, A. Mancini, M. Barkey, F. Keilmann, S. A. Maier and A. Tittl. Adv. Mater. 36, 2405978 (2024) 

6. Hybrid Molecular Beam Epitaxy for Single-Crystalline Oxide Membranes with Binary Oxide Sacrificial Layers. S. Varshney, S. Choo, L. Thompson, Z. Yang, J. Shah, J. Wen, S. J. Koester, K. A. Mkhoyan, A. S. McLeod and B. Jalan. ACS Nano 18, 6348 (2024)

7. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. J. Matson, S. Wasserroth, X. Ni, M. Obst, K. Diaz-Granados, G. Carini, E. M. Renzi, E. Galiffi, T. G. Folland, L. M. Eng, J. M. Klopf, S. Mastel, S. Armster, V. Gambin, M. Wolf, S. C. Kehr, A. Alù, A. Paarmann and J. D. Caldwell. Nat. Commun. 14, 5240 (2023)

8. Probing the micro- and nanoscopic properties of dental materials using infrared spectroscopy: A proof-of-principle study. M. Beddoe, T. Gölz, M. Barkey, E. Bau, M. Godejohann, S. A. Maier, F. Keilmann, M. Moldovan, D. Prodan, N. Ilie, and A. Tittl. Acta Biomat. 168, 309 (2023)

9. Multiplication of the orbital angular momentum of phonon polaritons via sublinear dispersion. A. Mancini, L. Nan, R. Berté, E. Cortés, H. Ren, S. A. Maier. Nature Photonics 18, 677 (2024)

10. Electrically switchable metallic polymer metasurface device with gel polymer electrolyte. D. de Jong, J. Karst, D. Ludescher, M. Floess, S. Moell, K. Dirnberger, M. Hentschel , S. Ludwigs , P. V. Braun and H. Giessen. Nanophotonics 12, 1397 (2023)  

11. Near-Field Retrieval of the Surface Phonon Polariton Dispersion in Free-Standing Silicon Carbide Thin Films. A. Mancini, L. Nan, F. J. Wendisch, R. Berté, H. Ren, E. Cortés, S. A. Maier. ACS Photonics 9, 3696 (2022)

12. Experimental Observation of ABCB Stacked Tetralayer Graphene. K. G. Wirth, J. B. Hauck, A. Rothstein, H. Kyoseva, D. Siebenkotten, L. Conrads, L. Klebl, A. Fischer, B. Beschoten, C. Stampfer, D. M. Kennes, L. Waldecker, T. Taubner

13. Electro-active metaobjective from metalenses-on-demand. J. Karst, Y. Lee, M. Floess, M. Ubl, S. Ludwigs, M. Hentschel and H. Giessen. Nat. Commun. 13, 7183 (2022)

 

14. Observing 0D subwavelength-localized modes at ~100 THz protected by weak topology. J. Lu, K. G. Wirth, W. Gao, A. Hessle, B. Sain, T. Taubner, T. Zentgraf. Science Advances 7, 49 (2021) 

15. Electrically switchable metallic polymer nanoantennas. J. Karst, M. Floess, M. Ubl, C. D., C. Malacrida, T. Steinle, S. Ludwigs, M. Hentschel, H. Giessen. Science 374, 612 (2021)

16. Label-free detection of brain tumors in a 9L gliosarcoma rat model using stimu-lated Raman scattering-spectroscopy optical coherence tomography. S. Soltani, Z. Guang, Z. Zhang, J. J. Olson, and F. E. Robles J. Biomed. Opt. 26, 076004 (2021)

 

17. Tunable s-SNOM for Nanoscale Infrared Optical Measurement of Electronic Properties of Bilayer Graphene. K. G. Wirth, H. Linnenbank, T. Steinle, L. Banszerus, E. Icking, C. Stampfer, H. Giessen, T. Taubner. ACS Photonics 8, 418 (2021)

 

18. Interferometric near-field characterization of plasmonic slot waveguides in single- and poly-crystalline gold films. M. Prämassing, M. Liebtrau, H. J. Schill, S. Irsen, and S. Linden. Opt. Exp. 28, 12998 (2020)

 

19. Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale. Julian Karst, Florian Sterl, Heiko Linnenbank, Thomas Weiss, Mario Hentschel and Harald Giessen. Sci. Adv. 6, eaaz0566 (2020)

20. Pushing Down the Limit: In Vitro Detection of a Polypeptide Monolayer on a Single Infrared Resonant Nanoantenna. Rostyslav Semenyshyn, Florian Mörz, Tobias Steinle, Monika Ubl, Mario Hentschel, Frank Neubrech, and Harald Giessen. ACS Photonics 6, 2636 (2019)

 

21. Robust and rapidly tunable light source for SRS/CARS microscopy with low-intensity noise. Heiko Linnenbank, Tobias Steinle, Florian Mörz, Moritz Flöss, Han Cui, Andrew Glidle, and Harald Giessen. Adv. Photonics 1, 055001 (2019)

 

22. Coherently broadened, high-repetition-rate laser for stimulated Raman scattering–spectroscopic optical coherence tomography. Francisco E. Robles, Heiko Linnenbank, Florian Mörz, Patrick Ledwig, Tobias Steinle, and Harald Giessen. Opt. Lett. 44, 291 (2019)

 

23. Nanoscale Hydrogenography on Single Magnesium Nanoparticles. Florian Sterl, Heiko Linnenbank, Tobias Steinle, Florian Mörz, Nikolai Strohfeldt, and Harald Giessen. Nano Lett. 18, 4293 (2018)

24. Wavelength-Dependent Third-Harmonic Generation in Plasmonic Gold Nanoantenna: Quantitative Determination of the d-Band Influence. Joachim Krauth, Harald Giessen, and Mario Hentschel. ACS Photonics 5, 1863 (2018)

 

25. Unbiased All-Optical Random-Number Generator. T. Steinle, J. N. Greiner, J. Wrachtrup, H. Giessen, and I. Gerhardt. Phys. Rev. X 7, 041050 (2017)

国内用户单位

• 首都师范大学

• 东南大学

• 中石化上海研究院

• 香港科技大学


国外用户单位

• Ludwig-Maximilians-Universität MÃnchen (LMU),Germany

• Technica1 University of Munich(TUM)Germany

• University of Stuttgart, Germany

• Politecnico di Milano, Italy

• Institut Fresnel,France

• Technical University of Denmark(DTU)Denmark

• University of Maryland (UMD)USA

• University of Minnesota(UMN)USA

• Yale University, USA

• Johannes Kepler University Linz(JKU)Austria

• ICFO - The Institute of Photonic Sciences, Spain

• Pennsylvania State University (Penn State)USA

• German Aerospace Center(DLR)Germany

• Vrije Universiteit Amsterdam, Netherlands

• University of Vienna, Austria

• University of British Columbia(UBC)Canada

• University of G1asgow, UK