当前位置: 首页 > 公司 > 新闻中心 > 新技术!增材减材一体化新系统,不同工艺无缝切换,加工精度优于100 nm!

新技术!增材减材一体化新系统,不同工艺无缝切换,加工精度优于100 nm!

发布日期:2023-03-17

增材减材复合神器


随着材料加工、微纳机电、微流控、新型医疗设备、微电子器件等领域的发展,对不同材料的精细激光加工的需求越来越多。借助激光加工技术不仅可以对材料进行减材制造,还可以对特定材料进行增材制造。近日,Quantum Design中国公司引进了Femtika公司设计并生产的飞秒激光微纳加工综合系统-Laser Nanofactory,以满足科研或工业界对精细激光加工的需求。Laser Nanofactory是一款集增材与减材制造于一体的综合微纳加工系统。Laser Nanofactory与传统的微纳3D打印设备相比不仅可用于光子学聚合物微纳结构的加工,还可以用于石英,陶瓷,玻璃和金属等材料从毫米到微米尺度的精确加工。得益于Femtika国际领先的飞秒激光技术,Laser Nanofactory加工速度可高达50 mm/s,加工精度优于100 nm,加工过程中无拼接痕迹。Laser Nanofactory可以提供不同功率的激光,满足您从工业生产到科研探索的多方面需求。


Femtika飞秒激光微纳加工综合系统-Laser Nanofactory

 

精选案例


2.1多光子聚合(Multi-Photon Polymerization)微纳加工


光学微结构

左图为菲涅尔微透镜,右图为微棱镜

 

生物医药

左图为微针阵列,右图为生物用微支架

 

MEMS/传感器

左图为可活动的微锁链,右图为微型弹簧

 

2.2激光选择性刻蚀


微流控加工

左图为在熔融石英玻璃上制备的微流道,右图为在玻璃中刻蚀的特斯拉阀

 

MEMS

左图为微型间歇齿轮,右图为特殊3D喷嘴

 

2.3激光刻蚀


金属加工

左图为在金属上制备直径为30 μm的微洞,右图为长度500 μm的二维码

 

表面改性

左图为在金属表面上制备的疏水微结构,右图为在金属表面上制备的亲水微结构


利用飞秒激光在钛金属表面产生不同厚度的氧化层

 

2.4 综合加工应用


利用激光刻蚀制备出较大的微流道,再通过多光子聚合技术在流道的特定位置形成微滤网

 

已有用户



发表文章

[1] A. Butkutė, G. Merkininkaitė, T. Jurkšas, J. Stančikas, T. Baravykas, R. Vargalis, T. Tičkūnas, J. Bachmann, S. Šakirzanovas, V. Sirutkaitis, and L. Jonušauskas, “Femtosecond Laser Assisted 3D Etching Using Inorganic-Organic Etchant”, Materials 2022,15, 2817, (2022).

[2] G. Kontenis, D. Gailevičius, N. Jimenez, and K. Staliunas, “Optical Drills by Dynamic High‑Order Bessel Beam Mixing”, Phys. Rev. Applied 17, 034059, (2022).

[3] D. Čereška, A. Žemaitis, G. Kontenis, G. Nemickas, and L. Jonušauskas, “On‑Demand Wettability via Combining fs Laser Surface Structuring and Thermal Post-Treatment”, Materials 2022,15, 2141, (2022).

[4] A. Butkutė, and L. Jonušauskas, “3D Manufacturing of Glass Microstructures Using Femtosecond Laser”,Micromachines 2021,12, 499, (2021).

[5] D. Andrijec, D. Andriukaitis, R. Vargalis, T. Baravykas, T. Drevinskas, O. Kornyšova, A. Butkutė, V. Kaškonienė, M. Stankevičius, H. Gricius, A. Jagelavičius, A. Maruška, and L. Jonušauskas, “Hybrid additive subtractive femtosecond 3D manufacturing of nanofilter based microfluidic separator”, Applied Physics A (2021).

[6] D. Gonzalez-Hernandez, S. Varapnickas, G. Merkininkaitė, A. Čiburys, D. Gailevičius, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas,”Laser 3D Printing of Inorganic Free‑Form Micro-Optics”, Photonics 2021,8, 577, (2021).

[7] D. Andriukaitis, A. Butkutė, T. Baravykas, R. Vargalis, J. Stančikas, T. Tičkūnas, V. Sirutkaitis, and L. Jonušauskas, “Femtosecond Fabrication of 3D Free-Form Functional Glass Microdevices: Burst-Mode Ablation and Selective Etching Solutions”, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, (2021).

[8] A. Butkutė, T. Baravykas, J. Stančikas, T. Tičkūnas, R. Vargalis, D. Paipulas, V. Sirutkaitis, and L. Janušauskas, “Optimization of selective laser etching (SLE) for glass micromechanical structure fabrication”, Optical Express 23487, Vol. 29, No. 15, 19.07.2021, (2021).

[9] A. Maruška, T. Drevinskas, M. Stankevičius, K. Bimbiraitė-Survilienė, V. Kaškonienė, L. Jonušauskas, R. Gadonas, S. Nilsson, and O. Kornyšova, “Single-chip based contactless conductivity detection system for multi-channel separations”, Anal. Methods, 2021,13,141–146, (2021).

[10] L. Bakhchova, L. Jonušauskas, D. Andrijec, M. Kurachkina, T. Baravykas, A. Eremin, and U. Steinmann,“Femtosecond Laser-Based Integration of Nano-Membranes into Organ-on-a-Chip Systems”, Materials 2020, 13, 3076 (2020).

[11] T. Tičkūnas, D. Paipulas, and V. Purlys, “Dynamic voxel size tuning for direct laser writing,” Opt. Mater. Express 10, 1432-1439 (2020).

[12] T. Tičkūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization”, Appl. Phys. Lett. 116, 031101 (2020).

[13] L. Jonušauskas, T. Baravykas, D. Andrijec, T. Gadišauskas, and V. Purlys, “Stitchless support-free 3D printing of free-form micromechanical structures with feature size on-demand”, Sci Rep 9, 17533 (2019).

[14] S. Gawali. D. Gailevičius, G. Garre-Werner, V. Purlys, C. Cojocaru, J. Trull, J. Montiel-Ponsoda, and K. Staliunas, “Photonic crystal spatial filtering in broad aperture diode laser”, Appl. Phys. Lett. 115, 141104 (2019).

[15] L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27, 15205-15221 (2019).

[16] L. Jonušauskas, D. Mackevičiūtė, G. Kontenis and V. Purlys, “Femtosecond lasers: the ultimate tool for high precision 3D manufacturing”, Adv. Opt. Technol., 20190012, ISSN (Online) 2192-8584, (2019).

[17] L. Grineviciute, C. Babayigit, D. Gailevicius, E. Bor, M. Turduev, V. Purlys, T. Tolenis, H. Kurt, and K. Staliunas,“Angular filtering by Bragg photonic microstructures fabricated by physical vapour deposition”, Appl. Surf. Sci., 481, 353-359 (2019).

[18] D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive manufacturing of 3D glass-ceramics down to nanoscale resolution”, Nanoscale Horiz., 4, 647-651 (2019).

[19] E. Yulanto, S. Chatterjee, V. Purlys, and V. Mizeikis, “Imaging of latent three-dimensional exposure patterns created by direct laser writing in photoresists”, Appl. Surf. Sci., 479, 822-827 (2019).

[20] L. Jonušauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale”, J. Opt., 20(05301) (2018).

[21] E. Skliutas, S. Kasetaite, L. Jonušauskas, J. Ostrauskaite, and M. Malinauskas “Photosensitive naturally derived resins toward optical 3-D printing,” Opt. Eng. 57(4), 041412 (2018).

[22] L. Jonušauskas, S. Rekštyte, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas,“Hybrid subtractive-additive-welding microfabrication for lab-on-chip applications via single amplified femtosecond laser source,” Opt. Eng. 56(9), 094108 (2017).