台式X射线吸收精细结构谱仪-XAFS/XES
台式X射线吸收精细结构谱仪-XAFS/XES

台式X射线吸收精细结构谱仪-XAFS/XES



美国easyXAFS公司最新推出台式X射线吸收精细结构谱仪(XAFS/XES),采用独有的X射线单色器设计,无需同步辐射光源,在常规实验室环境中实现X射线吸收精细结构测量和分析,提供XAFS和XES两种测量模式,并轻松相互切换。以极高的灵敏度和光源质量,广泛应用在催化、电池等研究领域,实现对元素的测定、定量和价态分析等


研究金属材料的晶体结构和物相组成,给出大无序体系的结构参数,解决重大科学问题。

XAFS/XES 设备特点 


-  无需同步辐射光源

-  科研级别谱图效果

-  台式设计,实验室内使用

-  可外接仪器设备,控制样品条件

-  可实现多个样品或多种条件测试

-  操作便捷、维护成本低

XAFS/XES 设备参数


X射线源:

          XAFS: 1.2-kW XRD(Mo/W)

          XES: 100W XRF 空冷管(Pd/W)
能量范围: 5-12keV; 可达19keV
分辨率: 0.5-1.5eV
样品塔: 7位自动样品轮
布拉格角: 55-85 deg


检测器: SDD

单晶尺寸:

          球面单晶(Si/Ge)

          直径10cm,曲率半径100cm
软件: LabVIEW, 脚本扫描
扩展: 仪器可外接设备,控制样品条件
分析仪校准: 预先校准,快速插拔更换

XAFS300


 

XES100


■  台式XAFS/XES谱仪在环境元素分析中的应用


现今常用的X射线光谱技术,例如X射线光电子能谱(XPS)仅能对样品表面进行分析,无法获得体相结构信息,且需要超高真空度,通常无法对塑料,环氧树脂和树脂进行测试;X射线荧光光谱(XRF)可用作元素分析技术,但其能量分辨率较低,无法实现对Cr元素不同化合物的甄别。近年来,基于同步加速器的X射线吸收精细结构谱(XAFS)和X射线发射光谱(XES)技术,得到了长足的发展和应用。其优点是样品需求量非常小,可以研究自然界不同样品中目标元素的电子结构,被广泛用于玻璃,土壤,塑料,煤,铬鞣革和超镁铁矿岩石中的Cr元素的价态和含量的分析。但XAFS和XES技术受限于同步辐射加速器光源,导致该技术无法在环境和工业应用领域进行有毒元素的合规性验证。

近期美国华盛顿大学Gerald Seidler教授等人成功设计并完成实验室级台式XAFS/XES谱仪easyXAFS的开发工作(图1a),其以罗兰环为基本几何构型,使用球形弯曲晶体分析仪(SBCA),实现了大的计数率/光通量和宽的布拉格角范围的技术提升,使XAFS (图1b)和XES分析(图1c)首次在实验室内成为了可能,是分析环境和制成品中Cr形态和含量的首选。

图1. (a) easyXAFS公司台式XAFS谱仪及创始人Devon Mortensen; (b)XAFS工作原理示意图;(c)XES工作原理示意图

 

图2显示了XAFS光谱Cr近边区结果(XANES)。研究人员利用台式XAFS技术轻松对铬元素进行分析检测,不仅完成了标准品化合物K2CrO4的测试及拟合分析,同时也实现了对实际生产样品的表征。


图2. XAFS近边区光谱(a)六价参考化合物,铬酸钾;(b)CRM 8113a是基于RoHS描述的用于重金属分析的认证参考材料

 

台式XAFS谱仪也同时配置了XES模组,通过激发特定元素内层电子后使外层电子产生弛豫并发射X射线荧光,对其能量和强度进行分析可以精确的给出目标元素的氧化态、自旋态、共价、质子化状态、配体环境等信息。由于不依赖于同步辐射,且得益于特有的单色器设计,可以在实验室内实现高分辨宽角高通量的XES元素分析(包括P, S, V,Zn, Cr, Ni, As, U, etc.)。在图3中,在未知Cr含量的塑料样品中,当拟合Cr元素XES Kα光谱时,可以充分观察到Cr的各种氧化态之间的精细光谱变化,且测试结果与同步辐射XAFS一致。对比Cr(VI)和Cr(III),可以在高于20 meV的能量分辨率下轻松辨别光谱特征的差异。Cr(III)在价态上具有更高电子密度,其光谱将会向更高的能量方向移动,且相对于Cr(VI)峰变宽,可以明显区分出Cr(VI)和Cr(III)。

图3. 背景扣除和积分归一化后的Cr(VI)和Cr(III)铬化合物的Cr Kα XES 光谱

 

此外,从标准塑料样品中收集的XES光谱(图4),利用线性superposition analysis技术,经拟合与参考化合物光谱的线性叠加,推断出的Cr(III)/Cr(VI)比例再结合传统的XRF技术,就可以实现Cr(VI) ppm级别的定量分析。

图4. 不同样品中Cr Kα XES光谱的垂直偏移(所有光谱均经过背景校正和归一化)


XAFS/XES技术不仅可以应用于多种聚合物样品中Cr元素的测定,同时也可应用于P、S、V、Zn、Cr、Fe、Co、Ni、Au、As、U等元素分析。此方法是无损测试,只需极少量的样品,就可由实验室级测试仪easyXAFS完成。基于实验室XAFS/XES的Cr测量可能成为未来环境领域及工业届的标准测试方法。




■  台式XAFS谱仪在能源存储材料研究中的应用



华盛顿大学的曹国忠教授等人使用实验室台式XAFS研究了三种不同的类型导电聚合物(Vö-V2O5/PANI, Vö-V2O5/PEDOT和Vö-V2O5/PPy)包裹的V2O5纳米纤维在聚合过程中在界面处生成ö的情况(图3 a-f)。这些表面的Vö会形成一个局部的电场,促进Vö-V2O5/PPy纳米微粒的电荷转移动力学,且伴生的V4+和V3+还可以催化氧化还原反应,显著地提高超级电容器的整体性能。通过对三种不同CP涂层的异同进行了比较和讨论发现,Vö在CP中的分布取决于其聚合条件和包覆厚度。另外,研究人员将XAFS和XPS技术有机结合起来,全面的阐述了Vö在表面层和体中的存在及其对电化学的影响,这种改善的电极材料的电荷转移动力学有望用于下一代储能系统中。

图1. (a-c) 使用台式XAFS谱仪得到的Vö-V2O5/PANI, Vö-V2O5/PEDOT和Vö-V2O5/PPy中V元素的XANES谱图对比;(d)Vö-V2O5/PANI的SEM图像及XANES;(e)KVOH和VOH的XRD和V元素的XANES谱图对比;(f)使用XPS和XANES表征Vö-V2O5/PEDOT计算的得到的V2O5中氧空位的含量对比;(g-j)使用台式XAFS谱仪得到的V箔片的EXAFS谱图及其R和k空间变换谱图


这种可以在不改变锂电池包结构或使用与快速充电应用相关的时间分辨技术下进行原位分析的技术,可以用来评估一些模型系统的充放电和健康状态。与传统同步加速器相比反馈速度更快,如带有多价电荷载体的电池或负离子氧化还原机制,在这些模型中电荷转移位点通常是不明确的。作为未来的发展方向, 基于实验室的XAFS研究模式可以作为电池退化机制研究的一个有用研究模型(其通常需要频繁和长期的XAFS分析和监测),加速新材料的发现和LIBs的操作模式的改进。


参考文献:

[1] Tailoring Energy and Power Density through Controlling the Concentration of Oxygen Vacancies in V2O5/PEDOT Nanocable Based Supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 16647−16655.

[2]V2O5–Conductive polymer nanocables with builtin local electric field derived from interfacial oxygen vacancies for high energy density supercapacitors. J. Mater. Chem. A, 2019, 7, 17966.




更多应用案例,请您致电010-85120277/78/79/80 或写信至 info@qd-china.com 获取。


1、XAFS300




2、XES100


■   XES Mode 


■   XAFS Mode

 

 



1. Jahrman, Seidler, et al., J. Electrochem. Soc. 2019.

2. Jahrman, Holden, et al., Rev. Sci. Instrum. 2019.

3. Bès, Ahopelto, et al., J. Nucl. Mater. 2018.

4. Mundy, Cossairt, et al.,Chem Mater 2018

5. Jahrman, Seidler, and Sieber, Anal. Chem., 2018

6. Holden, Seidler, et al., J. Phys. Chem. A, 2018.

7. Stein, Holden, et al., Chem. Mater., 2018.

8. Padamati, Angelone, et al., JACS, 2017

9. Mortensen, Seidler, et al., Phys Rev B, 2017.

10. Valenza, Jahrman, et al., Phys Rev A, 2017

11. Mortensen, Seidler, et al., XAFS16 conference proceedings.

12. Seidler, Mortensen, et al., XAFS16 conference proceedings.

13. Seidler, Mortensen, et al., Rev. Sci. Instrum. 2014.

Quantum Design International

访问Quantum Design总部